M1.(a) (i) calcium oxide

in either order

1

carbon dioxide

accept correct formulae

1

(ii) $C(s) + CO_2(g) \rightarrow 2CO(g)$ allow multiples

1

(iii) 210 (tonnes)

award **3** marks for the correct answer with or without working allow ecf for arithmetical errors

if answer incorrect allow up to **2** marks for any of the steps below:

 $160 \to 112$

 $300 \rightarrow 112 / 160 \times 300$

or

moles $Fe_2O_3 = 1.875 (\times 10^6)$ or 300 / 160

moles of Fe = 3.75×10^6) or $2 \times moles Fe_2O_3$

mass Fe = moles Fe × 56

105 (tonnes) scores 2 (missing 1:2 ratio)

420 (tonnes) scores 2 - taken M_r of iron as 112

3

(b) (i) aluminium is more reactive than carbon **or** carbon is less reactive than aluminium

must have a comparison of reactivity of carbon and aluminium

accept comparison of position in reactivity series.

1

(ii) (because) aluminium ions are positive

ignore aluminium is positive

1

and are attracted / move / go to the negative electrode / cathode

1

where they gain electrons / are reduced / $Al^{3+} + 3e^- \rightarrow Al$

accept equation or statements involving the wrong number of electrons.

1

	(iii)	(because) the anodes or (positive) electrodes are made of carbon / graphite	1
		oxygen is produced (at anode)	1
		which reacts with the electrodes / anodes do not accept any reference to the anodes reacting with oxygen from the air equation $C + O_2 \longrightarrow CO_2$ gains 1 mark (M3)	1 [13]
M2. (a)	left ha	and: (conical) flask do not accept round bottomed flask or container which is not a flask	1
	right	t hand: beaker / trough accept plastic box	1
(b)	(i)	157	1
	(ii)	all calcium carbonate used up or reaction stopped do not accept all acid used up	1
(c)	(i)	0.007(272727) correct answer with or without working gains 2 marks if answer incorrect, allow (0.32 / 44) for 1 mark	2
	(ii)	0.007(272727) allow ecf from (c)(i)	1

	` ,	allow ecf from (c)(ii) if use 0.00943 moles then = 106 if use 0.007 allow 143 (142.857)	1
	(iv)	(138) – 60 (= 78) 23 / 85	1
		(78 / 2) = 39	1
		potassium sodium / rubidium identity of metal ecf on A,, but must be Group 1 If no working max 1 mark	1
(d)	(i)	(relative atomic mass) would decrease	1
		because the mass lost greater	1
		so moles carbon dioxide larger or moles metal carbonate greater	1
	(ii)	no change	1

(iii) $(M_r = mass / moles = 1 / 0.00727...) = 137.5 \text{ or } 138$

because the acid (already) in excess

1

1

so the amount carbon dioxide lost is the same

[17]

M3.(a) copper has delocalised electrons

accept copper has free electronsignore sea of electrons **or** mobile electrons

1

(electrons) which can move <u>through the metal / structure</u>

allow (electrons) which can carry a charge <u>through the metal / structure</u>

1

(b) (i) (M, FeCl₃ =) 162.5 correct answer with or without working gains **3** marks can be credited from correct substitution in step **2**

1

or

2 (moles of) FeCl $_{\scriptscriptstyle 3}$ = 325

or

 $112 \rightarrow 325$

$$\frac{11.20}{56} \times 162.5$$

allow ecf from step 1

$$\frac{325}{112} \times 11.2$$

1

= 32.5 accept 32.48 1 74.8 (ii) accept 74.77 - 75 accept ecf from (b)(i) if there is no answer to part(i) if candidate chooses not to use their answer then accept 86.79 - 87 1 **M4.**(a) (i) CH₄ allow H₄C do not allow lower-case h do not allow superscript 1 (ii) single 1 (iii) alkanes 1 (b) (i) carbon / C any order 1 hydrogen / H allow phonetic spelling 1

[6]

sulfur /	sulp	hur /	'S
----------	------	-------	----

(ii) air / atmosphere

1

1

(iii) acid rain

1

damages trees / plants **or** kills aquatic organisms **or** damages buildings / statues **or** causes respiratory problems

allow harmful to living things

1

(c) carbon / C

accept soot / particulates / charcoal

1

- (d) any **four** from:
 - (supports hypothesis) because when the fuel contained more carbon the temperature of the water went up more / faster (in 2 minutes)
 - (does not support hypothesis as) temperature change per gram decreases as the number of carbons increases
 - (does not support hypothesis) because the more carbon in the fuel the more smoke **or** the dirtier / sootier it is
 - only tested hydrocarbons / alkanes / fuels with between 5 and 12 carbon atoms
 - valid, justified, conclusion

accept converse statements

4

(e) (i) 0.15

correct answer with or without working gains **2** marks if answer incorrect, M, carbon dioxide = 44 gains **1** mark allow 0.236 / 0.24 / 0.2357142 (ecf from M, of 28) for **1** mark

2

(ii) 0.4(0)

```
1
```

```
(iii) C<sub>3</sub>H<sub>8</sub>

correct formula with or without working scores 2 marks

0.15 / 0.05 = 3

allow ecf from (e)(i)
```

and

```
0.4 / 0.05 = 8 (1)

allow ecf from (e)(ii)

allow 1 mark for correct empirical formula from their values
```

If use 'fall-back-values:

0.50 / 0.05 = 10

and

0.20 / 0.05 = 41 mark

 C_4H_{10}

1 mark
if just find ratio of C to H using fall-back values, get C₂H₅
allow 1 mark

[19]